大师讲坛

上海交通大学始终秉持“自强首在储才,储才必先兴学”的信念,把人才培养作为办学的根本任务,以“培养第一等人才、砥砺第一等品行”为教育理念,精勤进取,笃行不倦,培养了一批又一批大师级栋梁之才。为了建立本校师生和学术大师之间学术交流的桥梁,上海交通大学于2012年4月创办“大师讲坛”,以“研其精者,道其深;博其大者,致其远”为主题,秉持“学以致用,知行合一”的宗旨,邀请国内外学术大师、著名科学家和学者走进讲坛,讲述科学知识、科学道德、科研精神和研究方法,与交大师生面对面交流,分享科学智慧和人生经验,让交大师生时刻感受“转身遇见大师”的学术氛围。

云展厅链接
讲坛概况

“大师讲坛”自成立以来,始终秉持高端性、开放性特色和学以致用、广开思路的原则,由“国家最高科技奖获得者”王振义院士首讲,截至2022年4月(十周年),已开办讲座169场,邀请了160余位国内外著名专家学者前来做客,与近十万人次交大师生互动交流。这些学术大师包括137位国内外科学院/工程院院士,其中,诺贝尔奖、菲尔兹奖、图灵奖和沃尔夫奖获得者共27位。“大师讲坛”采用访谈与讲座相结合的形式进行,营造轻松、互动的学术氛围,以大师典范指引青年学子的人生与学术航向,以家国情怀鼓励青年学子潜心科研,服务国家发展。

多年来,“大师讲坛”始终与交大同向同行,为交大师生提供了一个包容开放、自由平等的学术交流平台。未来,“大师讲坛”将继续以传承文明、探求真理为使命,打造更加丰富多元的科学盛宴。传播学术思想,弘扬科学精神,为交大校园营造出浓郁的科研学术氛围,为交大学子们打开通向大师成才之道的大门,为祖国科学事业孕育未来的栋梁之材。

讲坛预告
06
2025-11
【大师讲坛】第270期:石墨烯与层状材料在光子学与光电子学中的应用
石墨烯与层状材料在光子学与光电子学领域展现出巨大潜力。在这些领域中,它们的光学与电学特性得以充分结合,并且石墨烯无带隙的特点亦可转化为优势。石墨烯中狄拉克电子的线性色散关系,使其能够实现超宽谱带的可调谐性,以及通过栅压调控、在超宽带宽内实现三次谐波增强,这为光通信与信号处理领域所需的电可调宽带频率转换器开辟了道路。由于泡利阻塞效应,石墨烯中可观察到可饱和吸收现象,该特性可被用于实现多种超快与宽带激光器的锁模运作。石墨烯集成光子学为下一代数据通信与电信中所需的调制器、探测器和开关的晶圆级制造提供了一个平台。这些功能可通过将石墨烯层置于作为无源光波导的光波导顶端来实现,从而简化现有技术。基于多种原子晶体的异质结构,其性质既不同于其单一组成成分,也不同于其三维体材料。将这些晶体以堆叠方式组合,可用于设计此类异质结构的功能,并应用于新型发光器件中,例如单光子发射器和可调谐发光二极管。 Graphene and layered materials have great potential in photonics and optoelectronics, where the combination of their optical and electronic properties can be fully exploited, and the absence of a bandgap in graphene can be beneficial. The linear dispersion of the Dirac electrons in graphene enables ultra-wide-band tunability as well as gate controllable third-harmonic enhancement over an ultra-broad bandwidth, paving the way for electrically tuneable broadband frequency converters for optical communications and signal processing. Saturable absorption is observed as a consequence of Pauli blocking and can be exploited for mode-locking of a variety of ultrafast and broadband lasers. Graphene integrated photonics is a platform for wafer scale manufacturing of modulators, detectors and switches for next generation datacom and telecom. These functions can be achieved with graphene layers placed on top of optical waveguides, acting as passive light-guides, thus simplifying the current technology. Heterostructures based on layers of atomic crystals have properties different from those of their individual constituents and of their three dimensional counterparts. The combinations of such crystals in stacks can be used to design the functionalities of such heterostructures, that can be exploited in novel light emitting devices, such as single photon emitters, and tuneable light emitting diodes.
Andrea Ferrari
英国皇家工程院院士
30
2025-10
【大师讲坛】第269期:CryoSeek(酷寻)——以结构为先导的生物学发现新范式
糖质,又称为碳水化合物,是地球上含量最为丰富的生物大分子。尽管其生理功能至关重要,糖质的结构生物学研究却显著滞后于蛋白质与核酸。前期对于人源葡萄糖转运蛋白 GLUT3 与 D-葡萄糖的1.5 Å分辨率晶体结构清晰表明,该转运体能够识别α与β两种变旋异构体。这一发现凸显了高分辨率结构在阐明糖质分子的立体化学方面的重要作用。虽然冷冻电镜已能够解析膜蛋白胞外修饰的糖链结构,但通常仅限于修饰位点附近的少数糖残基,且难以获得高分辨率结构。近年来,我们一直致力于获得完整糖链的高分辨率结构,但进展有限。通过建立名为“CryoSeek”的新范式,我们最近成功解析了多种具有高阶结构组装特征的糖质分子的高分辨率结构。 Carbohydrates are the most abundant biomolecules on Earth. Despite their physiological importance, the structural biology of glycans has significantly lagged behind that of proteins and nucleic acids. The crystal structure of the human glucose transporter GLUT3 bound to D-glucose at 1.5 Å resolution clearly demonstrates that the transporter can recognize both α- and β-anomers. This finding underscores the power of high-resolution structures in elucidating the stereochemistry of sugars. While cryo-EM has enabled the structural resolution of glycan chains that modify the extracellular surface of membrane proteins, it has largely been limited to a small number of sugar residues near the modification site and at moderate resolutions. We have been striving to solve high-resolution structures of full glycan chains with little success until recently. By establishing a new paradigm called CryoSeek, we have successfully resolved the high-resolution structures of numerous glycans with higher-order structural assemblies.
颜宁
中国科学院院士,美国国家科学院外籍院士
24
2025-10
【大师讲坛】第267期:从超分子聚合物到功能材料及手性系统
自聚合物发现以来,科学家对其结构始终存在争论。在Hermann Staudinger提出大分子概念前,学界普遍认为聚合物源于小颗粒或分子的胶体聚集。自1920年起,聚合物和大分子被认为是通过共价键将单体在二维或三维空间连接构成的材料。尽管大分子链间超分子相互作用的重要性不言而喻,但当时难以设想基于小分子相互作用可构建聚合物材料。超分子化学的突破性进展表明,通过强方向性次级相互作用可实现小分子构建聚合物材料——超分子聚合物领域由此诞生。通过控制分子片段间的超分子相互作用,设计具有响应性与动态功能的新型功能材料变得更为容易。其中,对分子时空位置的控制是获得目标功能的关键。本次讲座将探讨手性在时空维度中的典型案例及涌现机制,同时聚焦非共价合成中的分子相互作用,探讨其在自旋过滤、生物材料及OLED等领域的应用前景。 Since the discovery of the first polymers, scientists have debated their structures. Before Hermann Staudinger published the brilliant concept of macromolecules, it was generally assumed that the properties of polymers were based on the colloidal aggregation of small particles or molecules. Since 1920, polymers and macromolecules have been synonymous with each other; i.e. materials made by means of many covalent bonds that connect monomers in 2 or 3 dimensions. Although supramolecular interactions between macromolecular chains are clearly important, e.g. in nylons, it was unthinkable to imagine polymeric materials based on the interaction of small molecules. Breakthroughs in supramolecular chemistry have shown that polymer materials can be made by small molecules using strong directional secondary interactions; the field of supramolecular polymers was born. In a sense, we have come full circle [1]. By controlling the supramolecular interactions between molecular fragments, it became easier to design systems materials with unconventional responsive behavior and dynamic functionalities. In all cases, control over the position of the molecules in time and space is essential to achieve the required functionality. In our group we focus on the emergence of homochirality in time and space and some examples of this challenge will be discussed in the lecture. We use this to design supramolecular materials and chiral systems with highly ordered morphologies that change their properties on the action of light, pressure, temperature, or the addition of chemicals. On the other hand, applications in spin filtering, biomaterials and OLEDs will be discussed with a continues focus on the molecular interactions using non-covalent synthesis [2].
E.W. “Bert” Meijer
美国国家科学院外籍院士
24
2025-10
【大师讲坛】第268期:基因打靶的诞生&ESCRT通路在HIV出芽及细胞生物学中的作用
基因打靶(gene targeting)的诞生,标志着分子遗传学从描述性研究进入可定向改造基因功能的时代。上世纪八十年代,马里奥·卡佩奇教授通过在哺乳动物胚胎干细胞中实现同源重组,首次建立了在基因组特定位点进行精准修饰的技术。这一突破使科学家能够“敲除”或“敲入”特定基因,从而系统地研究其在发育、生理与疾病中的功能。该方法孕育了“敲除小鼠”模型,为人类遗传病、肿瘤和神经系统疾病研究奠定了基础,并推动了现代基因治疗与精准医学的发展。本报告将回顾基因打靶技术从概念到实现的科学历程,探讨其对生命科学与医学的深远影响。 Gene targeting marked the transition of molecular genetics from largely descriptive studies to an era of targeted engineering of gene function. In the 1980s, Professor Mario R. Capecchi achieved homologous recombination in mammalian embryonic stem cells, thereby establishing the first technology for precise modification at defined genomic loci. This breakthrough enabled scientists to knock out or knock in specific genes and to systematically interrogate their roles in development, physiology, and disease. The method gave rise to knockout mouse models, laid the foundation for research on human genetic disorders, cancer, and neurological diseases, and propelled the development of modern gene therapy and precision medicine. This lecture will retrace the scientific journey from concept to realization and explore the profound impact of gene targeting on the life sciences and medicine. 为了传播感染,人类免疫缺陷病毒(HIV)需形成具有包膜的球形颗粒,并通过质膜出芽释放。我们研究发现,HIV-1及其他逆转录病毒通过劫持宿主的内体分选转运(ESCRT)通路的活性实现出芽。我们与合作团队进一步研究了ESCRT通路在HIV出芽、细胞分裂及其他关键细胞功能中的作用,并解析了十余种不同ESCRT因子及复合体的三维结构。这些研究揭示了ESCRT组分如何组装、相互作用并识别病毒及泛素化蛋白,ESCRT-III亚基如何通过构象变化形成能够重塑细胞膜的纤丝状结构,以及ATP水解所释放的能量如何驱动膜重塑。 To spread infections, the human immunodeficiency virus (HIV) must form enveloped spherical particles that bud through the plasma membrane. We have demonstrated that HIV-1 and other retroviruses bud from cells by usurping the activity of the host Endosomal Sorting Pathway Required for Transport (ESCRT) pathway. We and our collaborators have also explored the functions of the ESCRT pathway in HIV budding, cell division and other cellular functions, and determined the three-dimensional structures of more than a dozen different ESCRT factors and complexes. This work has helped reveal how ESCRT components assemble, interact, and recognize viral and ubiquitylated proteins, how ESCRT-III subunits can change conformations and form filaments that remodel membranes, and how the energy of ATP hydrolysis is used to power membrane remodeling.
Mario R. Capecchi
美国国家科学院院士 2007年诺贝尔生理学或医学奖获得者
15
2025-10
【大师讲坛】第265期:跨学科研究新前沿:全程耦合框架及其全球应用 基本信息
当今世界正面临诸多严峻挑战,包括生物多样性丧失、气候变化、生态系统服务功能退化、环境污染以及土地退化等。应对这些全球性挑战,不仅需要在认知层面实现深刻的转型,更需要对复杂的人地关系开展更加系统和有效的治理。本次报告将介绍“全程耦合”(metacoupling)这一综合性分析框架,该框架旨在揭示邻近系统与远程系统之间的人地相互作用机制,并探讨其在应对多重挑战中的应用潜力。通过该框架,可推动包括生态学、环境科学、景观学以及城乡规划在内的多学科研究与实践的发展。 The world is facing numerous challenges, including biodiversity loss, climate change, deterioration of ecosystem services, environmental pollution, and land degradation. Overcoming these and other global challenges requires a transformative understanding and more effective management of complex human-nature interactions worldwide. This lecture presents an integrated framework of metacoupling (human-nature interactions within and across adjacent and distant systems) and its applications to address various challenges and advance many disciplines, such as ecology, environmental science, landscape architecture, and urban and regional planning.
刘建国
美国国家科学院院士、美国艺术与科学院院士
25
2025-09
【大师讲坛】第261期:大师之思索:科研中的软硬兼施
Jerzy Duszynski教授将结合自身长达50年的科研工作历程,深入剖析对取得卓越科研成果以及实现职业良好发展而言至关重要的因素。同时,他将以波兰华沙的实验生物学努卡研究所(Nencki Institute of Experimental Biology)为典型案例,着重阐释工作机构在其中发挥的关键作用。 Jerzy Duszynski教授还将邀请来自波兰的生物化学家Agnieszka Dobrzyń教授和物理化学家Marcin Drąg教授简短地分享他们科学成就,为广大听众,尤其是青年才俊带来启发。 I will present my opinions on factors important for achieving good scientific results and career. I will draw from my personal experience of 50 years scientific work. Besides other factors I will describe how important is an institution one is working in. I will use an example of the Nencki Institute of Experimental Biology in Warsaw, Poland. I will also share my time with two outstanding Polish researchers: a biochemist Professor Agnieszka Dobrzyń, the director of the Nencki Institute of Polish Academy of Sciences in Warsaw, Poland and a chemist Professor Marcin Drąg working at the Institute of Physical Chemistry of Polish Academy of Sciences in Warsaw, Poland. I intend to give them a chance to present shortly their scientific achievements and to inspire especially younger audience.
Jerzy Duszynski
波兰科学院院士、中国科学院外籍院士、欧洲科学院院士
17
2025-09
【大师讲坛】第260期:体内可操控微型医用机器人
Wireless small-scale medical robots have the unique capability of navigating, operating and staying inside hard-to-reach, tight, risky and deep sites inside our body. This talk reports our recent milli- and microscale wireless miniature medical robots down to cell size that could achieve various minimally invasive medical functions, such as targeted active drug delivery, neural stimulation, clot opening, liquid biopsy, biofluid pumping, cauterization, and hyperthermia. Due to miniaturization limitations on on-board actuation, powering, sensing, computing and communication, new materials and methods need to be introduced in creating and controlling such robots. Moreover, they need to be tracked under medical imaging modalities, such as ultrasound, fluoroscopy, photoacoustic imaging, and MRI, for their precise and safe operation. 3D microprinting and assembly-based fabrication methods and biocompatible and multifunctional soft composites with embedded micro/nanomaterials are proposed to create novel medical milli/microrobots. Soft-bodied medical miniature robot designs enable active shape programming-based adaptive, multimodal and multifunctional navigation and functions, and safe operation. External physical forces, such as magnetic fields, acoustic waves and light, and physical or chemical (e.g., catalytic) interactions with the operation medium are used to actuate and steer such miniature robots wirelessly as a single robot or robot collectives. These robots are aimed to save lives of more patients by curing diseases not possible or hard to cure and decrease the side effects and invasiveness of disease treatments drastically. 无线小型医疗机器人拥有独特的导航、操作能力,并能驻留在人体内难以触及、狭窄、危险和深处的部位。本次报告将介绍我们近期研发的毫米级至微米级(小至细胞尺寸)无线微型医疗机器人,它们能够实现多种微创医疗功能,例如靶向主动给药、神经刺激、血栓清除、液体活检、生物流体泵送、烧灼和高温治疗。 由于在机载驱动、供能、传感、计算和通信方面存在微型化限制,需要引入新材料和新方法来创建和控制此类机器人。此外,为了确保其操作的精确性和安全性,需要在超声、荧光透视、光声成像和磁共振成像(MRI)等医学成像模态下对它们进行跟踪定位。 我们提出采用三维微打印和基于组装的制造方法,以及嵌入微/纳米材料的生物相容性多功能软复合材料,来制造新型医疗毫米/微米机器人。软体医疗微型机器人设计能够实现基于主动形状编程的自适应、多模式和多功能的导航与操作,并确保安全运行。 利用外部物理力(如磁场、声波和光)以及与操作介质发生的物理或化学(例如催化)相互作用,可以无线驱动和引导此类微型机器人,无论是单个机器人还是机器人集群。这些机器人旨在通过治疗目前无法或难以治愈的疾病来挽救更多患者的生命,并大幅降低疾病治疗的副作用和侵入性。
Metin Sitti
美国国家工程院院士,欧洲科学院院士,土耳其科学院院士,土耳其科奇大学校长
18
2025-06
【大师讲坛】第256期:分子光伏与钙钛矿太阳能电池的惊人崛起
Photovoltaic cells using molecular dyes, semiconductor quantum dots or perovskite pigments as light harvesters have emerged as credible contenders to conventional devices. Dye sensitized solar cells use a three-dimensional nanostructured junction for photovoltaic electricity production. They possess unique practical advantages in particular highly effective electricity production from ambient light, ease of manufacturing, flexibility and transparency, bifacial light harvesting, and aesthetic appeal, which have enabled industrial mass production and commercial applications. They served as a launch pad for perovskite solar cells which are presently being intensively investigated as one of the most promising future PV technologies, the power conversion efficiency of solution processed laboratory cells having currently reached 27 %. Present research focusses on ascertaining their long-term operational stability and scale up to pilot production of large modules. My lecture will cover our most recent findings in these revolutionary photovoltaic domains. 采用分子染料、半导体量子点或钙钛矿色素作为光捕获材料的光伏电池,已成为传统器件的强劲竞争者。染料敏化太阳能电池通过三维纳米结构结实现光电转换,具备独特的实用优势:包括弱光环境高效发电、易于制造、柔性与透明度俱佳、双面采光能力以及美学吸引力,这些特质促成了其工业化量产与商业应用。该技术更为钙钛矿太阳能电池的发展奠定基础——后者作为最具前景的未来光伏技术之一,其溶液加工实验室电池的功率转换效率目前已达27%,现阶段的重点研究在于确认其长期运行稳定性,并推进大型组件的试点量产。本次演讲将涵盖我们在这些革命性光伏领域的最新研究成果。
Michael Grätzel
中国科学院外籍院士
十周年庆
十年庆典录像
十年庆典宣传片
云展厅短视频
十年庆典暖场视频